14.2.0 MECHANICAL SCIENCE II

14.2.1 Introduction

Mechanical science introduces the trainee to the science applicable to the engineering field. Its' aim is to equip the trainee with the basic concepts of engineering science. The instructional approach will emphasize on experiments, industrial visits and analysis of various engineering concepts.

14.2.2 General Objectives

By the end of the module unit, the trainee should be able to:

- a) explain the basic concepts of engineering science
- b) design simple engineering mechanism

14.2.3 Summary Table and Time Allocation

	Sub-Module	Content	Time
	Unit		(Hrs)
14.2.01	Machines	Definition of terms	
		 Examples of simple machines 	
		 Problems on simple machines 	
		• Laws of machine	12
		• Solution of problems using the law of the	
		machines	
14.2.02	Gases	• Gas laws	
		 Perfect gas equation 	14
		 Solutions to problems on gases 	14
		 Engineering examples 	
14.2.03	Heat	Definition of terms	
		Comparative scales	
		• Simple thermometer	
		 Application of thermal expansion 	14
		• Methods of heat transfer	14
		• Solve problems on heat	
14.2.04	Density	Definitions	
		Archimedes principle	
		Solution to problems	14
14 2 05	Pressure	Definition of terms	
14.2.03	Tressure	Deminition of terms Simple becometer	
		Application of pressure	12
		 Application of pressure Solution to problems 	
	/ ///	Solution to problems	
Total Time			66

14.2.01 MACHINES

Theory

- 14.2.01T Specific Objectives By the end of the sub module unit, the trainee should be able to;
 - a) define related terms
 - b) give examples of simple machines
 - c) solve problems related to machines
 - d) determine the law of the machine
 - e) solve problems using the law of machine

14.2.01C Competence

The trainee should have the ability to solve problems on machines

Content

- 14.2.01T1 Definition of terms
 - i) mechanical advantage
 - ii) velocity ratio
 - iii) efficiency
- 14.2.01T2 Examples of simple machines
 - i) levers
 - ii) wheel and axle
 - iii) screw jack
 - iv) pulleys
 - v) belt and chain
 - vi) gears
- 14.2.01T3 Problems on a simple
 - machines
 - i) mechanical advantages
 - ii) velocity ration
 - iii) efficiency

14.2.01T4 Laws of machine i) load-effort graphs

14.2.01T5 Solution of problems using the law of the machine

Practice

- 14.2.01P Specific Objectives By the end of the submodule unit, the trainee should be able to:
 - a) determine mechanical advantage, velocity, ratio and efficiency of a simple machine
 - b) determine the law of the machine

14.2.01P1Mechanical advantage

- i) velocity ratio
- ii) efficiency
- 14.2.01P2 Law of the machine
 - Suggested

Teaching/Learning

Resources

- Weston differential pulley
- Weight
- · Hangers
- Screw jack
- Spring balance
- Cords
- Metre rule
- Callipers

14.2.02T GASES

Theory

- 14.2.02T Specific Objectives By the end of the sub module unit, the trainee should be able to;
 - a) state the gas laws
 - b) state engineering examples where gases are used
 - c) establish the ideal gas equation
 - d) solve the simple problems on gases

14.2.02C Competence

The trainee should have the ability to work on gas systems

Content

- 14.2.02T1 Gas laws
 - i) Boyles law
 - ii) Charles law
- 14.2.02T2 Perfect gas equation
- 14.2.02T3 Solutions to problems

on gas

- i) Boyle's law
- ii) Charles' law
- iii) Perfect gas equation
- 14.2.02T4 Engineering examples
 - i) engines
 - ii) air compressors

Practice

- 14.2.02P Specific Objectives By the end of the submodule unit, the trainee should be able to:
 - a) verify Boyle's law

b) verify Charles' law

14.2.02P1 Boyle's law

14.2.02P2 Charles' law

Suggested Teaching/Learning Resources

- Glass tube sealed at one end
- Mercury reservoir
- Flexible rubber tube
- Metre rule

14.2.03 HEAT

Theory

- 14.2.03T Specific Objectives By the end of the sub module unit, the trainee should be able to;
 - a) define terms
 - b) describe temperature scales
 - c) describe the working of a simple thermometer
 - d) explain the application of thermal expansion
 - e) describe methods of heat transfer
 - f) solve problems

14.2.03C Competence

The trainee should have the ability to:

- i) calibrate a thermometer
- ii) determine the coefficient of

thermal conductivity of a material

Content

- 14.2.03T1 Definition of terms
 - i) heat
 - ii) specific heat capacity
 - iii) specific latent heat
- 14.2.03T2 Temperature scales
 - i) celcius
 - ii) absolute zero (Kelvin)
 - iii) fahrenheit
 - iv) Rankine
- 14.2.03T3 Simple thermometer
- 14.2.03T4 Application of thermal expansion
- 14.2.03T5 Methods of heat transfer
- 14.2.03T6 Solution to problems

Practice

- 14.2.03P Specific Objectives By the end of the submodule unit, the trainee should be able to:
 - a) determine the specific heat capacity of a given material
 - b) determine the latent heat of a given material
 - c) determine the coefficient of thermal conductivity of a given material

Content

- 14.2.03P1Specific heat capacity
- 14.2.03P2 Latent heat
- 14.2.03P3 Coefficient of thermal conductivity

Suggested Teaching/Learning Resources - Calorimeter

- Thermometer

14.2.04 **DENSITY**

Theory

- 14.2.04T Specific Objectives By the end of the sub module unit, the trainee should be able to:
 - a) define terms
 - b) state Archimedes principle
 - c) solve problems

14.2.04C Competence

The trainee should have the ability to use a hydrometer

Content

14.2.04T1 Definitions of terms

i) density

- ii) relative density
- 14.2.04T2 Archimedes principle
- 14.2.04T3 Solution to problems

Practice

- 14.2.04P Specific Objectives By the end of the submodule unit, the trainee should be able to:
 - a) determine density of a given material
 - b) verify Archimedes principles

Content

- 14.2.04P1 Density
- 14.2.04P2 Verification of Archimedes principle

Suggested Teaching/Learning Resources

- Spring balance
- Beaker
- Weighing scales
- Specimen
- Water
- Lead slots
- Metre rule
- Test tube
- Hydrometer

14.2.05 PRESSURE

Theory

- 14.2.05T Specific Objectives By the end of the sub module unit, the trainee should be able to;
 - a) define terms
 - b) describe a simple barometer
 - c) explain the application of pressure
 - d) solve problems

14.2.05C Competence

The trainee should have the ability to:

- i) take pressure readings
- ii) use barometers
- Content
- 14.2.05T1 Definition of terms
 - i) pressure
 - ii) atmospheric
 - pressure
 - iii) gauge pressure
 - iv) absolute pressure
- 14.2.05T2 Simple barometer
- 14.2.05T3 Application of pressure
 - i) vacuum pump
 - ii) hydraulic pump
- 14.2.05T4 Solution of problems

Practice

14.2.05P Specific Objectives By the end of the submodule unit, the trainee should be able to take pressure readings using pressure measuring devices

Content 14.2.01P1 Pressure readings

Suggested

Teaching/Learning Resources

- Barometers
- Bourdon tube
- Manometers